1

Forces and friction 5C

1 **a** i
$$R(-)$$

 $R-5g=0$
 $R=5g$
 $=49 \text{ N}$
 $\therefore F_{MAX} = \frac{1}{7} \times 49$
 $=7 \text{ N}$

Since the driving force is only 3 N, the friction will only need to be 3 N to prevent the block from slipping, so F = 3 N.

- ii Since driving force is equal to frictional force, body remains at rest in equilibrium.
- **b** i $F_{MAX} = 7 \text{ N}$ (from part a), and driving force is 7 N, so friction will need to be at its maximum value to prevent the block from slipping, i.e. F = 7 N.
 - ii F is equal to the driving force of 7 N, so the body remains at rest in limiting equilibrium.
- **c** i $F_{MAX} = 7 \text{ N}$ (from part **a**), and driving force is 12 N, so friction will be at its maximum value of 7 N.
 - **ii** Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii
$$R(\rightarrow)$$

 $F = ma$
 $12 - 7 = 5a$
 $a = 1 \,\text{ms}^{-2}$

Body accelerates at 1ms⁻²

d i
$$R(-)$$

 $R-14-5g=0$
 $R=63 \text{ N}$
 $\therefore F_{MAX} = \mu R$
 $=\frac{1}{7} \times 63$
 $=9 \text{ N}$

Since the driving force is only 6 N, the friction will only need to be 6 N to prevent the block from slipping, so F = 6 N.

- ii Since driving force is equal to frictional force, body remains at rest in equilibrium.
- **e** i $F_{MAX} = 9 \text{ N}$ (from part **d**), and driving force is 9 N, so friction will need to be at its maximum value to prevent the block from slipping, i.e. F = 9 N.
 - ii F is equal to the driving force of 9 N, so the body remains at rest in limiting equilibrium.

- 1 **f** i $F_{MAX} = 9$ N (from part **d**), and driving force is 12 N, so friction will be at its maximum value of 9 N.
 - ii Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii
$$R(\rightarrow)$$

 $F = ma$
 $12-9=5a$
 $a = 0.6 \,\text{ms}^{-2}$

Body accelerates at 0.6 ms⁻²

g i
$$R(-)$$

 $R+14-5g=0$
 $R=35 \text{ N}$
∴ $F_{MAX} = \mu R$
 $= \frac{1}{7} \times 35$
 $= 5 \text{ N}$

Since the driving force is only 3 N, the friction will only need to be 3 N to prevent the block from slipping, so F = 3 N.

- ii Since driving force is equal to frictional force, body remains at rest in equilibrium.
- **h** i $F_{MAX} = 5 \text{ N}$ (from part **g**), and driving force is 5 N, so friction will need to be at its maximum value to prevent the block from slipping, i.e. F = 5 N.
 - \mathbf{ii} F is equal to the driving force of 5 N, so the body remains at rest in limiting equilibrium.
- i i $F_{MAX} = 5 \text{ N}$ (from part g), and driving force is 6 N, so friction will be at its maximum value of 5 N
 - **ii** Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii
$$R(\rightarrow)$$

 $F = ma$
 $6-5=5a$
 $a = 0.2 \,\mathrm{m \, s}^{-2}$

Body accelerates at $0.2\,m\,s^{-2}$

1 j i
$$R(-)$$

 $R+14\sin 30^{\circ}-5g=0$
 $R=42 \text{ N}$
 $\therefore F_{MAX}=\mu R$
 $=\frac{1}{7}\times 42$
 $=6 \text{ N}$

Considering horizontal forces:

Driving force
$$-F_{MAX} = 14\cos 30^{\circ} - 6 > 0$$
, so $F = F_{MAX} = 6$ N

ii Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii
$$R(\rightarrow)$$

 $F = ma$
 $14\cos 30^{\circ} - 6 = 5a$
 $a = 1.22 \,\text{m s}^{-2} \ (3 \text{ s.f.})$
Body accelerates at $1.22 \,\text{m s}^{-2} \ (3 \text{ s.f.})$

k i
$$R(-)$$

 $R + 28 \sin 30^{\circ} - 5g = 0$
 $R = 35 \text{ N}$
 $\therefore F_{MAX} = \mu R$
 $= \frac{1}{7} \times 35$
 $= 5 \text{ N}$

Considering horizontal forces:

Driving force
$$-F_{MAX} = 28\cos 30^{\circ} - 5 > 0$$
, so $F = F_{MAX} = 5 \text{ N}$

ii Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii
$$R(\rightarrow)$$

 $F = ma$
 $28\cos 30^{\circ} - 5 = 5a$
 $a = 3.85 \,\mathrm{m s^{-2}} \ (3 \,\mathrm{s.f.})$
Body accelerates at $3.85 \,\mathrm{m s^{-2}} \ (3 \,\mathrm{s.f.})$

1 l i
$$R(-)$$

 $R-56\cos 45^{\circ}-5g=0$
 $\therefore R=88.6 \text{ N (3 s.f.)}$
 $\therefore F_{MAX} = \mu R$
 $=\frac{1}{7} \times 88.6$
 $=12.657 \text{ N}$

Considering horizontal forces:

Driving force
$$-F_{MAX} = 56 \sin 45^{\circ} - 12.657 > 0$$
, so $F = F_{MAX} = 12.7 \text{ N}$ (3 s.f.)

ii Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii
$$R(\rightarrow)$$

 $F = ma$
 $56\sin 45^{\circ} - 12.657 = 5a$
 $5a = 26.941$
 $a = 5.388 \,\mathrm{m \, s^{-2}}$
So the acceleration is $5.39 \,\mathrm{m \, s^{-2}}$ (3 s.f.)

2 a
$$R(-)$$

 $R + 20\sin 30^{\circ} - 10g = 0$
 $R = 88 \text{ N}$
 $R(\rightarrow)$
 $F = ma$
 $20\cos 30^{\circ} - \mu \times 88 = 10 \times 1$
 $\mu = 0.083 \text{ (2 s.f.)}$

b
$$R(-)$$

 $R + 20\cos 30^{\circ} - 10g = 0$
 $R = 80.679...N$
 $R(\rightarrow)$
 $F = ma$
 $20\cos 60^{\circ} - \mu \times 80.679 = 10 \times 0.5$
 $\mu = 0.062 \quad (2 \text{ s.f.})$

c
$$R(-)$$

 $R-20\sqrt{2}\sin 45^{\circ}-10g = 0$
 $R = 118 \text{ N}$
 $R(\rightarrow)$
 $20\sqrt{2}\cos 45^{\circ} - m^{2}118 = 10^{2}0.5$
 $m = 0.13 (2 \text{ s.f.})$

3 R(**下**):

$$R = 0.5g \cos 15^{\circ}$$

$$=0.5\times9.8\cos15^{\circ}$$

$$=4.7330...$$

Using Newton's second law of motion and $R(\mathbf{L})$:

$$F = ma$$

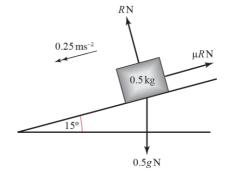
$$0.5g \sin 15^{\circ} - \mu R = 0.5 \times 0.25$$

$$\mu R = (0.5 \times 9.8 \sin 15^{\circ}) - 0.125$$

$$\mu = \frac{1.2682... - 0.125}{4.7330...}$$

$$= 0.24153...$$

The coefficient of friction is 0.242 (3s.f.).



4 R(**下**):

$$R = 2g \cos 20^{\circ}$$

$$= 2 \times 9.8 \cos 20^{\circ}$$

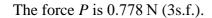
$$=18.418...$$

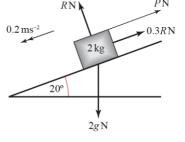
Using Newton's second law of motion (F = ma) and $R(\mathbf{\angle})$:

$$2g \sin 20^{\circ} - 0.3R - P = 2 \times 0.2$$

$$(2\times9.8\sin 20^{\circ}) - (0.3\times18.418...) - 0.4 = P$$

$$P = 0.7782...$$





5 R(**下**):

$$R = 5g\cos 30^{\circ} + P\sin 30^{\circ}$$

$$=\frac{49\sqrt{3}}{2} + \frac{P}{2}$$

Using Newton's second law of motion and R(7):

$$P\cos 30^{\circ} - 5g\sin 30^{\circ} - 0.2R = 5 \times 2$$

$$P\cos 30^{\circ} = 10 + 5g\sin 30^{\circ} + \frac{1}{5} \left(\frac{P}{2} + \frac{49\sqrt{3}}{2} \right)$$

$$\left(\frac{\sqrt{3}}{2} - \frac{1}{10}\right)P = 10 + \frac{5 \times 9.8}{2} + \frac{49\sqrt{3}}{10}$$

$$\left(5\sqrt{3} - 1\right)P = 100 + 245 + 49\sqrt{3}$$

$$P = \frac{429.8704896}{7.6602...} = 56.117...$$

The force *P* is 56.1 N (3s.f.).

6 Resolving vertically:

$$R + P\sin 45^{\circ} = 10g$$

$$P\sin 45^{\circ} = 10g - R$$

Resolving horizontally and using F = ma:

$$P\cos 45^{\circ} - 0.1R = 10 \times 0.3$$

$$P\cos 45^{\circ} = 3 + 0.1R$$
 (2)

Since $\sin 45^{\circ} = \cos 45^{\circ}$, we can equate (1) and (2):

(1)

$$10g - R = 3 + 0.1R$$

$$1.1R = 10g - 3$$

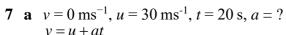
$$R = \frac{(10 \times 9.8) - 3}{1.1}$$

Sub R = 86.36 into (1):

$$P\sin 45^{\circ} = 10g - 86.36$$

$$P = \frac{(10 \times 9.8) - 86.36}{\sin 45^{\circ}} = 16.45...$$

The force *P* is 16.5 N (3s.f.).



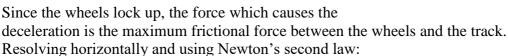
$$v = u + ai$$

$$0 = 30 + 20a$$

$$a = -\frac{20}{30} = -\frac{2}{3}$$

Resolving vertically:

$$R = mg$$

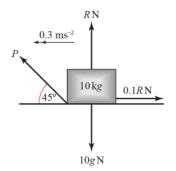


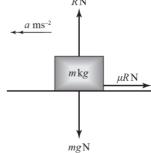
$$-\mu R = -\frac{2}{3}m$$

$$-\mu mg = -\frac{2}{3}m$$

$$\mu g = \frac{2}{3}$$

$$\mu = \frac{2}{3g}$$





7 b Suppose there is an added constant resistive force of air resistance, A, where A > 0 Resolving horizontally and using Newton's second law:

$$\mu mg + A = \frac{2}{3}m$$

$$\mu = \frac{2}{3g} - \frac{A}{mg} < \frac{2}{3g}$$

So the coefficient of friction found by the second model is less than the coefficient of friction found by the first model.

Challenge

 $R(\mathbf{\nabla})$:

$$R = mg \cos \alpha$$

Using Newton's second law of motion and $R(\mathbf{Z})$:

$$mg \sin \alpha - \mu R = ma$$

$$mg \sin \alpha - \mu mg \cos \alpha = ma$$

$$g(\sin\alpha - \mu\cos\alpha) = a$$

